

Effective DevOps:
Automation for Configuration, Collaboration & Precision

Contents

What is DevOps? 2

The Shortcomings of Traditional Software 2

Building Products with DevOps 2

Encourage Accountability 2

Continuous Delivery with DevOps (Everything-As-Code) 2

Software pipeline 3

What are the Major Tenets of Software Delivery with DevOps? 3

Make it Work, Make it Right, Make it Fast 3

The DevOps Toolchain 3

Process Automation 3

Continuous Learning 3

Fail Safe and Fail Fast 3

Quick Delivery 4

Be Proactive 4

Audit Results Regularly 4

Monitoring Versus Alerts 4

Automated Testing 5

Automate Yourself Out of a Job 5

Is Your Company Ready for DevOps? 5

rtslabs.com/devops 1

What is DevOps?
DevOps is the integration of company philosophies and tools which help
organizations deliver software at much higher velocity than before while
reducing complaints, errors and problems.
The Shortcomings of Traditional Software
In today’s environment, traditional methods fall short.

What if the big change doesn’t have any features that users want?

What if users don’t have patience to wait until the big change and decide to
move to another provider?

Today’s software development requires constant deployment, multiple
iterations and faces ever-changing expectations from customers.

Prior to the advent of DevOps, Development and Operations teams
worked separately and in silos, where one wanted new features, and
the other wanted stability. Now, their roles are merging and every
single task has become everyone’s shared responsibility.

The shared sense of goal-making inculcates team spirit, helping ship
software before deadlines and making required changes at lightning
fast pace.

This outlook has changed the delivery approach, too. Instead of
delivering big changes after inordinate delays which could take as much
as an entire year, smaller changes are implemented which take only a
few weeks or days.

The heart of DevOps is an approach that incorporates feedback, adapts
tiny changes and ships consistent deliveries.

Building Products with DevOps
Encourage Accountability
Code ownership and feature testing generally have been under the purview of either Development or
Operations team.

Instead of separate teams handling coding and post production, a single team becomes responsible for
the entirety of the processes involved in development and shipping of software.

If a team is working on a feature, then that team is responsible for everything surrounding that particular
feature.

A uniform service like a messaging board keeps everyone on board with the status of the project and
informs stakeholders about current issues in the system.

Continuous Delivery with DevOps (Everything-As-Code)
DevOps makes consistent delivery easy to do.

Considering the lines between Dev and Ops have been blurred to avoid physical resources altogether,
traditional software tools can be applied to the Ops side as well, and that takes the form of
Infrastructure-As-Code. Due to the advent of Public Cloud providers such as AWS, Azure, GCP, Digital
Ocean, etc., traditional methods of purchasing, configuring and operating on physical resources is no
longer the only option for a business to run its infrastructure. DevOps gains importance due to the
rtslabs.com/devops 2

strategic advantage of having the operational knowledge of infrastructure and being able to apply coding
principles so that not only can an application be consistently delivered, but also the infrastructure in which
it sits on. Now that hardware has been codified in any given cloud space, continuous delivery no longer
suffers from resource bottlenecks that once hindered application delivery of the past.

Software pipeline
The software pipeline keeps track of all software processes, and allows for inputs and outputs to flow
freely within the pipe to end up with an end-to-end means of building an application to its deployment
into the desired environment.

A software pipeline tool should make it easy to test changes and ship them into production as soon as
possible.

What are the Major Tenets of Software Delivery with DevOps?
Make it Work, Make it Right, Make it Fast
This is a common tenet found amongst the software development
crowd, but it absolutely applies to the DevOps methodology. The tools
that are used within the DevOps toolchain require code and
configuration changes within themselves. But if DevOps is even being
considered, new tools need to be reviewed and tested to solve for a
given use-case, optimized to fit the the overall business need, and
finally automated to be distributed throughout the business.

The DevOps Toolchain
Without the myriad combination of tools required for the entire
software development lifecycle, DevOps is a pipe dream. The stages of
the DevOps Toolchain are contested, but generally follow a pattern of:
Planning, Creating, Verifying, Packaging, Releasing, Configuring, and
Monitoring. There are many small tools for every single stage that
allow for inputs and outputs to flow freely between them that results
in true Continuous Delivery/Continuous Integration Architecture.

Process Automation
No longer are the days and weeks of waiting for servers and resources to be configured in a server closet
or data center farm when their cloud-equivalents can be scripted and deployed within minutes; this is just
one example of process automation. Elimination of pain-points sits at the heart of DevOps, and the
easiest way to do that is by automation through various tools and scripts.

Process Automation makes the underlying resources with which people work on traceable, repeatable,
and predictable. The major boon to automation is the resulting elimination of human error given a
process, as well as saving time that could be better spent learning and enhancing. Following this
precedent, every stage of the software development lifecycle gradually becomes less visible simply
because they are automated away from human responsibility to suit the business’ needs.

Continuous Learning
DevOps is a widely-debated topic, but none will argue against the fact that one must continuously keep up
and train on the newest technologies and race for participation in alpha and beta releases of tools.
Nothing in DevOps stays consistent, as requirements and needs constantly shift both internally, and
externally; this means that no one can fall in love with the tools that they use, but are still expected to be
their subject matter experts. The “one size fits all” approach is being replaced by a rapid, disruptive
technological ecosystem and tools have become “made to order.” It is then the burden of DevOps to be
able to quickly learn and execute, but also to know when to fail quickly and pursue another tool that
possibly better fits their needs.

rtslabs.com/devops 3

Fail Safe and Fail Fast
DevOps requires an attitude to consistently make breakthroughs in enhancements, but sometimes the
tools that have been decided on won’t be the solution to a given problem. While it might be easy to just
jump ship from one tool and move on to the next, it’s important to do so in a manner that won’t cause
things to break. By having entire structures templatized, scripted, and/or documented, DevOps
encourages the idea that no one should be scared of failing since they can roll back to something that
succeeds just as quickly as they failed. Canary releases and/or rolling updates are the bread and butter of
DevOps-oriented software deployment cycles.

Quick Delivery
DevOps abandons the silo approach of development in favor of a cyclic approach where every team is
consistent in their work and takes feedback from one another. Faster time-to-market goes hand-in-hand
with an Agile methodology of making smaller enhancements or changes as opposed to giant releases.
Developments teams can make these changes happen from their code, but the actual delivery of these
changes gives DevOps importance. Making changes is one thing, but having them reflect in a production
environment means having to change the approach to coding the applications in the first place. In today’s
development ecosystem, code ships are progressively getting smaller, and with the idea of making small
changes, architectures are shifting evermore to portable microservices. Small changes are delivered
quickly and keeps teams focused on that goal.

Be Proactive
After an incident occurs, its best to take into view whatever it is
that caused it. Consider the following: communicate early and
consistently. Resolving an incident is done easily if all
communication channels are maintained and proper
communication is carried through during an incident.

This plan has to be prepared prior to disaster striking. If not,
you will be left scrambling until some form of order descends.

Ensure there’s a communication plan, decide channels which
you’re going to use to communicate and keep a list of common
issues and their solutions handy to tide through the problems.

It is extremely important to learn from past mistakes and be
proactive in keeping extensive documentation of shortcomings
that have been encountered, so that proper steps can be taken
against the process to make sure the same mistakes are never
made twice. A strong DevOps culture places a higher
responsibility on enabling and equipping fellow team members
across other specializations with the proper skills and tools
needed to troubleshoot effectively.

Ryan Draga, the DevOps specialist at Scotia banks says that the biggest challenge with DevOps is
complacency. Thinking that hackers are smarter than you and that’s why anything that you do doesn’t
really count.

Audit Results Regularly
The remaining task is to run frequent audits to make sure the entire team is up to task and are good at
resolving incidents. Documenting results and introducing better workflows for diagnosis and
improvement is the key to betterment. The history of incidents can help zero down service level objectives,
help monitor signals and visualize things that matter.

rtslabs.com/devops 4

https://stackify.com/devops-success-stories/

Monitoring Versus Alerts
Monitoring might involve keeping track of all running processes--and
doesn’t necessarily mandate sending an alert about each and everything
that takes place. Monitoring ensures alerts aren’t triggered for minor
problems and attention is not diverted to mundane routine tasks. Careful
monitoring and a resourceful alerting system keeps most incidents from
happening. This provides oversight into system health and help keep
troubles in check before they take an ugly turn.

Maintaining a backlog of project work and status updates keeps teams
informed and reduces incidents before they happen. Review usage data to
see which version of a feature is performing best against the goals defined
during planning—and keep iterating and testing until the best version of
that feature is determined.

Four signals that are most commonly taken are:

● Latency
● Traffic
● Errors
● Saturation

These essential signals should be monitored as a team to provide a great User Experience. Based on
history of incidents, the company can understand service level objectives. Finally, the right signals are
monitored to help visualize core things for all involved teams.

Automated Testing
Software testing is a time-intensive process that takes many man-hours. Instead of delegating the tasks to
employees, automate software testing as much as possible to save man-hours and transfer them into
more productive tasks.

Automation additionally reduces needless hires and keeps teams compact. This also reduces unnecessary
communication between numerous members and reduces the task of keeping everyone updated.

Automate Yourself Out of a Job
In a world where constant change is the only constant, you can’t
cling to any one tool or methodology that you love; this idea
extends to your job, and it’s a common misconception that the
more we are needed, the more secure our job is. To automate
and free up more time for yourself for more important tasks
means to not allow yourself to be the bottleneck of a given
process, and more importantly, grant more bandwidth to take
on more roles and greater responsibilities.

To automate yourself out of a job means to reduce the amount
of time spent on any given task (or set of tasks) to allow energy
and time to be invested in more important things. Automate
yourself out of job and into the you want.

In every business there are parts that can be fully automated
and parts that cannot be automated at all. The important thing
is to properly identify what parts cannot be automated
currently, and to be on the lookout for any new tools that
potentially can. Either minimize those non-automated parts to

rtslabs.com/devops 5

zero, r create processes that can efficiently handle those things with the least investment in manual work.

Major efforts should be made to the automation of all tasks, no matter how trivial. As day-to-day
operations become more complicated with more (complicated) work, whatever that remains constant
should be automated off of your plate to allow for more time to do the more important things.

Integrating agile approach into team management and teamwork is key here.

Spending time on processes to find out ones that sponge away most time and determining what could be
done to reduce that lag should be the next thing on the block.

Figuring out pain points through monitoring and goal tracking helps with reducing time on minor tasks
that doesn’t necessarily require human hours to be completed.

Is Your Company Ready for DevOps?
Finally, the golden questions.

How do you determine if you’re ready for DevOps?

What kind of processes need to be automated before one’s ready for DevOps?

What kind of team framework should the team be in? Is the mindset right?

We need to answer all these questions before you decide if you’re ready for DevOps or not.

As a team, you could follow certain rules and procedures.

For instance you could plan a two week sprint where teams are merged and different members can learn
from each other.

The best thing to do to avoid problems is being proactive. Being proactive about the difficulties ahead and
preparing for them in advance Is preferred to running to the hills when trouble strikes.

Based on past problems and a level of experience you can design and implement a solid strategy.

Every incident that occurs gives you the ability to learn and never repeat it.

We hope this guide provides a running start towards a new way of thinking about DevOps with a
focus on software design, development, constant improvement and quality implementation.

rtslabs.com/devops 6

